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We consider the flow of a Newtonian fluid in a nano- or microchannel with walls that have patterned
variations in slip length. We formulate a set of equations to describe the effects on an incompressible New-
tonian flow of small variations in slip and solve these equations for slow flows. We test these equations using
molecular dynamics simulations of flow between two walls which have patterned variations in wettability.
Good qualitative agreement and a reasonable degree of quantitative agreement is found between the theory and
molecular dynamics simulations. The results of both analyses show that patterned wettability can be used to
induce complex variations in flow. Finally we discuss the implications of our results for the design of micro-
fluidic mixers using slip.
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I. INTRODUCTION

Several recent experiments �1–4� report the measurement
of large, shear-dependent liquid slip at partially wetting
liquid-solid surfaces. While the origin of these dramatic vio-
lations of the no-slip boundary condition is still controversial
�5�, interest is beginning to develop in how these effects may
be exploited in microfluidics �6�. Microfluidics is undergoing
rapid growth with applications to chemical and biochemical
synthesis �7� and high-throughput synthesis and screening
�8�. These applications require the manipulation of fluids in
microchannels where flows are limited to very low Reynolds
numbers. As a result, mixing in microfluidic devices tends to
be diffusion dominated, requiring long channels and long
retention times to achieve good mixing. As the scale of this
technology continues to diminish the effects of low Reynolds
numbers will become more significant. However, the effect
of slip at channel walls also increases at small length scales,
so it is natural to ask whether the effects of slip can be used
to overcome some of the disadvantages of laminar flow �6�.

To increase mixing rates it is necessary to induce trans-
verse or circulating flows in a channel, increasing the inter-
facial area between fluids or stream lines �for a recent review
see �9��. This can be achieved by active mixers, which pos-
sess moving parts, but these can be difficult to fabricate and
maintain. Passive mixers, on the other hand, achieve mixing
by virtue of their topology alone and have no moving parts.
Suggested designs for passive mixers include using channels
with patterned topography �10,11� or channels with patterned
surface charge in electro-osmotic flows �12�. Another possi-
bility is to use chemically patterned channel surfaces. For
example, Kuksenok and co-workers �13–15� have modeled
the mixing of a binary AB fluid in channels patterned with
A-like and B-like regions.

Yet another approach might be to use patterned wettability
to induce variations in slip. Slip is often characterised by a
slip length �, which is the distance at which the fluid velocity
at a surface �i.e., the slip velocity� vanishes if it is linearly
extrapolated beyond the surface. Measurements of slip
lengths do vary widely but some groups have reported slip

lengths of several microns �1�. It is common to invoke the
formation of nanobubbles at the hydrophobic surface �16� to
explain such large slip lengths. However, there is still much
disagreement about the magnitude of slip that can be in-
duced, although lengths of tens to hundreds of nanometers
seem to be more typical �3,4�. Furthermore, other factors
such as surface roughness and surface contamination do
seem to influence slip-length measurements considerably
�4,16�. Lauga and Stone �17� have recently considered the
effect of patterned no-slip and no-shear stress regions in
pressure-driven Stokes flow in a cylindrical geometry where
the no-shear stress regions model the presence of micro- or
nanobubbles on channel walls. From this they derive an ef-
fective macroscopic slip length which indeed is found to
depend on the shear rate and geometry.

Here we will assume that the variations in wettability can
produce variations in the slip of the flow at the channel
walls. Molecular dynamics simulations of flow past hydro-
phobic surfaces �18–20� certainly demonstrate a strong rela-
tionship between wettability and slip, although the slip
lengths found tend to be of the order of a few of tens mo-
lecular diameters at most. However, as noted above, the for-
mation of nanobubbles at hydrophobic surfaces may well be
able to induce very large slip lengths: thus large variations in
wettability on a surface might be expected to produce large
variations in slip length.

We begin by studying a Newtonian flow in a simple chan-
nel with a slip boundary condition characterized by a slip
length �, which varies in space—i.e., �=��x�. In the first
instance we are interested in seeing the effect of a variable
slip length on the flow and, second, in evaluating the pos-
sible exploitation of such effects in designing a microfluidic
mixing device. As this is a preliminary study, we will ap-
proach the problem analytically, using a pertubative scheme
to satisfy the slip boundary condition.

In Sec. IV, we will use molecular dynamics simulations of
the flow of a Lennard-Jones fluid between two plates. The
interaction between the plates and the fluid will be allowed
to vary in space in order to test the predictions of the analysis
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in Secs. II and III. We conclude with a discussion of the
implications of our findings here for the design of mixers in
microchannels using chemical patterning.

II. EQUATIONS FOR FLOWS WITH SPATIALLY
VARYING SLIP

We start with the Navier-Stokes equations for a viscous
incompressible fluid:

�� �u

�t
+ u · � u� = − � p + ��2u , �1�

� · u = 0, �2�

where u is the velocity field, p is the fluid pressure, � is the
fluid density, and � is the fluid viscosity.

We consider a pressure-driven flow in a two-dimensional
channel geometry corresponding to the flow between two
plates as illustrated in Fig. 1. The channel has length L and
width 2w. At the channel walls we have Navier slip bound-
ary condition �21�

u�±w� = � �
�u

�y
�±w� , �3�

where u is the longtunidal velocity component �x direction�.
The transverse velocity component v �y direction� satisifies
v�±w�=0 at the walls. At the channel exit and entry we pre-
scribe the pressure to be p0 and pL, respectively, giving a
pressure head across the channel of �p= p0− pL.

The solution to Eqs. �1�–�3� is

u =
�p

�L
�w2 + 2w� − y2� = U�1 + 2

�

w
−

y2

w2� , �4�

v = 0, �5�

p = p0 − �p� x

L
� , �6�

where U=w2�p /�L is the maximum fluid velocity in the
absence of slip.

We will now allow the slip length to vary in the x
direction—i.e.,

u�±w� = � ��x�
�u

�y
�±w� . �7�

Specifically, we will consider the following slip boundary
condition:

u�±w� = � ��1 + �eikx�
�u

�y
�±w� . �8�

If �	1, then we can apply a perturbative approach

u = u0 + �u1 + O��2� , �9�

v = v0 + �v1 + ¯ , �10�

p = p0 + �p1 + ¯ , �11�

where �u0 ,v0 , p0� solve the constant slip-length boundary
condition problem �1�–�3�. The equations for the first-order
corrections in � are then given by

��u0
�u1

�x
+ v1

�u0

�y
� = −

�p1

�x
+ ��2u1, �12�

�u0
�v1

�x
= −

�p1

�y
+ ��2v1, �13�

and

�u1

�x
+

�v1

�y
= 0, �14�

with boundary condition

u1�±w� =
2w��p

�L
eikx � �

�u1

�y
�±w� + O��� . �15�

The boundary condition immediately suggests the solution
ansatz u1=eikxf�y�. Inserting this into Eq. �14�, we find that

v1 = − ikeikxh�y� , �16�

where h��y�= f�y� and h�0�=0 since v1�0�=0 by symmetry.
We can now eliminate p1 from Eqs. �12� and �13� to ob-

tain the following ordinary differential equation for h�y�:

−
d4h

dy4 + � iku0



+ 2k2�d2h

dy2 − k�k3 +
i



�u0k2 +

d2u0

dy2 ��h = 0,

�17�

where 
=� /� is the specific viscosity. In terms of h the
boundary condition �15� becomes

dh

dy
�±w� = 2U

�

w
� �

d2h

dy2 �±w� + O��� . �18�

We note that the differential equation �17� is homogeneous,
so the magnitude of h will be set by the boundary condition
�18�. Further, when �	1, Eqs. �17� and �18� form a quasi-
linear boundary value problem. In the following section we
will examine the solution to this problem in a number of
limiting cases.

III. RELEVANCE TO MICROFLUIDIC DEVICES

At this stage we will introduce some scales into the prob-
lem. As the effects of boundary slip on the flow scale as � /w
�see Eq. �4��, at widths substantially greater than the slip

FIG. 1. The two-dimensional channel geometry.
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length, a surface with patterned wettability will have an in-
significant effect on the flow. With values of the slip length
of up to several microns reported in the literature �1�, we will
confine ourselves to a discussion of channels with widths
w�10 �m.

Obviously the wavelength of the slip variations 2� /k is
bounded above by the length of the channel L. The wave-
length is bounded below by the minimum size on which the
slip can be patterned. While microcontact printing �22� or
photolithography of hydrophilic or hydrophobic self-
assembled monolayers might be limited to wavelengths
greater than several hundred �m, in principle it is still of
interest to consider the limit as 2� /k	10 nm. This might
achieved using a combination of self-assembly by block co-
polymers and lithography for example �23�. Hence it is rea-
sonable to consider patternings that satisfy 107 nm2� /k
10 nm.

A. Slow flows with fine patterning

In the limit where U /k
	1 and U /k
	k2w2, Eq. �17�
reduces to

d4h

dy4 − 2k2d2h

dy2 + k4h = 0. �19�

For instance, in the case of water which is flowing at
0.01 ms−1 in a 10-�m-width channel �i.e., 1 nl per second�,
U /k
	w2k2	1 for 1 /k	20 �m. Note that Eq. �19� is real
�whereas Eq. �17� is complex�, so the variation in longitudi-
nal flow velocity is in phase with the variations in slip length
while the variations in transverse flow velocity are 90° out of
phase with the variations in slip length �recall Eq. �16��.

The solution to Eq. �19� with boundary condition �18� to
order � is given by

h�y� = U� �

w
� �w − y�sinh k�w + y� − �w + y�sinh k�w − y�

sinh 2kw + 2k� cosh 2kw − 4k�w + ��
,

�20�

where we recall that v1=−ikeikxh�y� and u1=eikxh��y�. Figure
2 shows h�y� for kw=10, 1 and 0.1. It is clear from Eq. �19�

and Fig. 2 that the magnitude of kw controls the variation
away from the walls in h�y� and hence in v1 and u1. With
kw	1, the transverse velocity induced v1 is confined to very
near the walls. Indeed, from Fig. 2 we see that to maximize
both the magnitude of h�y� and its penetration towards the
center of the channel we should choose kw	1. Similarly,
Fig. 3 shows h��y� for kw=10, 1, and 0.1.

Figure 4 shows a flooded contour plot of the variations in
both velocity components �u1 and v1� along a long channel
�L=20w� with kw=1, and Fig. 5 shows a vector plot of the
velocity components in a shorter channel �L=�w� with kw
=1. Note that where the slip at the channel wall is high, the
flow velocity increases at the channel walls, but decreases in
the center of the channel. Likewise, where the slip is low, the
flow velocity decreases at the channel wall but increases in

FIG. 2. The function kh�y�	v1 is shown in a channel for values
of kw=0.1,1 ,10 respectively. We have taken � /w=1.

FIG. 3. The function h��y�	u1 is shown in a channel for values
of kw=0.1,1 ,10 respectively. We have taken � /w=1.

FIG. 4. Contour plot showing ���x� /�=cos�kx� and the corre-
sponding variations in v1�x ,y� and u1�x ,y� in a channel for kw=1.
Regions with dark shading indicate negative velocity and regions
with light shading indicate positive velocities. We have taken � /w
=1 and the channel length is L=20w.
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the center of the channel. Between the peaks and troughs in
slip, transverse flow is generated away from or towards the
channel walls.

We can also look at square-wave variations in slip length,
utilizing the Fourier series for a square wave of wavelength
�=2� /k:

f�x� =
4

�


n=1

�
sin��2n − 1�kx�

2n − 1
. �21�

Since Eq. �19� is linear, we can solve for each Fourier mode
and resum to obtain the solution for a square-wave variation
in ��x�. Doing so gives

u1 =
4

�


n=1

�

h��k,y�
sin��2n − 1�kx�

2n − 1
, �22�

v1 =
4

�


n=1

�

kh�k,y�cos��2n − 1�kx� . �23�

Figure 6 shows a flooded contour plot of the velocity com-
ponents v1 and u1 for a square-wave variation in � with kw
=1.

B. Slow flows with larger-scale patterning

Now we consider the situation where 1�U /k
	k2w2.
For instance, in the case of water which is flowing at
0.01 ms−1 in a 10-�m-width channel �i.e., 1 nl per second�,
U /k
	w2k2	1 for 1 /k	20 �m. This corresponds to a
slow flow with spatial variations in slip length occurring on

scales greater than the channel width. Now Eq. �17� reduces
to

d4h

dy4 − 2k2d2h

dy2 + k�k3 + i
U


w2�h = 0. �24�

The solution to this equation with boundary conditions �18�
is

h�y� =

U� �

w
��sinh �+y sinh �−w − sinh �−y sinh �+w�

�+ cosh �+w sinh �−w − �− cosh �−w sinh �−w + ���+
2 − �−

2�sinh �+w sinh �−w
, �25�

where

�± = k2�1 ±�1 − i
U

w2k3

. �26�

Note that when U /w2k3
→0, expression �25� for h�y� re-
duces to expression �20� from the previous section. In fact it
is instructive �although tedious� to write Eq. �25� in the form
of Eq. �20� plus corrections in U /w2k3
. Doing so we can
write h�y� as

h�y� = h�1��y� +
iU

w2k3

h�2��y� + O�� U

w2k3

�2 , �27�

where h�1��y� is given by Eq. �20�:

h�2��y� =
1

12�
�6k�w2 − y2�sinh ky sinh kw + �w + y��k2�w

+ y�2 − 3�sinh k�w − y� − �w − y��k2�w − y�2

+ 3�sinh k�w + y� + h�1��y��8k3w2�3� + w�

+ 6k2 cosh 2kw + 3�4�k2w − 1�sinh 2kw�� �28�

and

� = sinh 2kw + 2k� cosh 2kw − 4k�w + �� . �29�

Note that the first-order correction in U /w2k3
 is purely
imaginary. Thus it introduces a phase lag the response of the
fluid to the slip at the walls �moving it downstream� and
increases the magnitude of h�y�. This is shown in Fig. 7
which compares the velocity u1 in the centre of the channel
for ��=� sin kx �kw=0.1� for U /w2k3
=0 and U /w2k3


FIG. 5. Vector plot showing ���x� /�=cos�kx� and the corre-
sponding velocity vector (u1�x ,y� ,v1�x ,y�) in a channel for kw=1.
We have taken � /w=1 and the channel length is L=�w.
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=15 �a large value of U /w2k3
 is chosen here so that the
effect of this term is easily visible�.

IV. MOLECULAR DYNAMICS SIMULATIONS

To study the effect of spatially varying wettability on flow
in a channel at a molecular level, we have followed the ap-
proach of Barrat and Bocquet �18,19�. We consider a
Lennard-Jones fluid with atomic mass m confined between
two walls with periodic boundary conditions applied in the
plane of the walls. The walls consist of fixed Lennard-Jones
atoms and interact with the fluid via a modified Lennard-
Jones potential of the form

��rij� = 4��� �

rij
�12

− cfs� �

rij
�6� , �30�

where 0�cfs�1 controls the degree of wettability of the
walls �18�. Note that the fluid atoms also interact according
to the potential �30� with cf f =1.2. Here we will consider
flows where cfs=cfs�x� to model the effect of chemical pat-
terning of the channel walls.

We used a simulation cell containing 6750 fluid atoms
within a volume of approximately �20��3. The temperature
was controlled using a Nosé-Hoover thermostat �24� on the
velocity component of the fluid atoms parallel to the channel
walls but perpendicular to the imposed flow direction �in Fig.
1 this is the direction into the page�. Flow can be induced by
applying a body force to the fluid atoms in a direction par-
allel to walls, giving a Poiseuille-type flow, or by dragging
one of the walls past the fluid, which induces a Couette flow.
Here we only consider the former as our intention is to make

a comparison with the pressure-driven flows of the previous
section.

When cfs=1.0 everywhere the flows are well approxi-
mated by solutions to the incompressible Navier-Stokes
equations �1� and �2� with a no-slip boundary condition, al-
though density variations occur near the walls due to the
well-known tendancy for fluid atoms to layer at a solid in-
terface. Furthermore, when 0.5�cfs�1.0 but is constant ev-
erywhere, we find that the flow is reasonably well approxi-

FIG. 6. Contour plot showing a square wave ���x� /� and the
corresponding variations in v1�x ,y� and u1�x ,y� in a channel for
kw=1. Regions with dark shading indicate negative velocity and
regions with light shading indicate positive velocities. We have
taken � /w=1 and the channel length is L=20w.

FIG. 7. Plot of the change in velocity down the channel for
U /w2k3
=15 �solid line� and for U /w2k3
=0 �dashed line� for
kw=0.1. We have taken � /w=1. The effect of this term is to cause
a phase lag in the velocity corrections away from the walls �effec-
tively shifting these changes downstream� and to increase the mag-
nitude of these corrections.

FIG. 8. This plot shows the time-averaged longitudinal velocity
u across the channel at x=5� �where cfs=0.9� and at x=−5� �where
cfs=0.5�. We calculate the effective slip length by fitting U�1
+� /w−y2 /w2� to the profiles �fits are shown�. In the solvophilic
region �x0—i.e., where cfs=0.9� we calculated an effective slip
length of �=9.1� and in the the solvophobic region �x=−0.5, cfs

=0.5� we calculated an effective slip length �=13.0�.

EFFECT OF PATTERNED SLIP ON MICRO- AND… PHYSICAL REVIEW E 72, 016303 �2005�

016303-5



mated by solutions to the Navier-Stokes equations with a slip
boundary condition �3�. Our simulations are in good agree-
ment with Barrat and Bocquet �18,19�.

We now consider the simulation of flows in a channel
with patterned slip length. The equation for cfs on the chan-
nel walls is

cfs = �0.9 if sin kx � 0,

0.5 if sin kx � 0,
� �31�

where kw=� �i.e., the wavelength of the pattern is 20�,
which is the width of channel�. Note that the mean value of
cfs is 0.7. Our simulations show that such a patterning does
indeed induce a variation in slip length along the channel
walls. For instance, as illustrated in Fig. 8 for a simulated
flow with peak flow longitudinal flow velocity U
=1.30�� /m�1/2, we calculated an effective slip length of �
=9.1� by fitting a parabolic profile U�1+� /w−y2 /w2� to the
longitudinal velocity profile in the solvophilic region
�x0—i.e., where cfs=0.9�. In the the solvophobic region
�x�0 cfs=0.5� we calculated an effective slip length �
=13.0�. Similarly, for a simulated flow with peak flow lon-
gitudinal flow velocity U=0.4�� /m�1/2, we calculated an ef-
fective slip length of �=3.6� in the solvophilic region �x
0—i.e., where cfs=0.9�. Likewise in the the solvophobic
region �x�0 cfs=0.5� we calculated an effective slip length
�=6.7�.

Furthermore, these variations in the effective slip length
induce transverse flows as anticipated in the previous sec-
tions. Figure 9 shows the time-averaged transverse velocity
of a flow, with peak longitudinal flow velocity U
=0.4�� /m�1/2. The peak transverse velocity is V
=0.03�� /m�1/2. Regions with light shading indicate flow in
the y direction and regions with dark shading indicate flow in
the negative y direction. Note that the variations in v�x ,y�
are 90° out of phase with the variations in cfs as predicted by
our analysis in Sec. III. To compare the magnitude of the
variations in v from the simulation to the theory of the pre-
vious sections, we use the effective slip lengths calculated
above. Thus �=5.2� and �=0.3 in Eq. �8�. Figure 10 com-
pares the theoretically expected variation in v at x=0 across
the channel for a square-wave variation in slip length �see
Eq. �23�� to the time-averaged simulated variations. It is seen
from the comparison that the theory underestimates the peak
values of v by a factor of 2–3.

Figure 11 shows a faster flow with peak longitudinal flow
velocity U=1.30�� /m�1/2 and peak transverse velocity V
=0.060�� /m�1/2. Regions with light shading indicate flow in
the y direction and regions with dark shading indicate flow in
the negative y direction. Note the downstream phase lag in
the variations in v�x ,y� with respect to the variations in
v�x ,y� in the slower flow shown in Fig. 9. We have not made
a direct comparison of this phase lag with the predicted
phase lag in Eq. �27� as we were unable to solve the full
equation for h, Eq. �17�, for fast flows analytically. However,
once again we find that the theory underestimates the peak
values of v by a factor of 2.

FIG. 9. A plot showing the square-wave cfs�x� boundary condi-
tion with kw=� imposed on the walls of the molecular dynamics
simulation, the effective slip lengths �eff induced by cfs, and a cor-
resonding contour plot showing the variations in v�x ,y�=v1�x ,y�.
The channel width is 2w=20� with periodic boundary conditions
applied at x= ±10�. The peak longitudinal flow velocity is U
=0.4�� /m�1/2 and the peak transverse velocity is V=0.03�� /m�1/2.
Regions with light shading indicate flow in the y direction and
regions with light shading indicate flow in the negative y direction.
Note that the variations in v�x ,y� are 90° out of phase with the
variations in cfs.

FIG. 10. A comparison of the transverse velocity v at x=0
across the channel from the simulation in Fig. 9 and from theory.
The theory has been fitted to the simulation data by calculating an
effective slip length �=6.7� across the solvophilic region
�x0—i.e., where cfs=0.9� and an effective slip length �=3.6�
across the solvophobic region �x�0, cfs=0.5�. Thus �=5.2� and
�=0.3. It is seen from the comparison that the theory underesti-
mates the peak values of v by a factor of 2–3.
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V. DISCUSSION

The molecular dynamics simulations in Sec. IV demon-
strate that patterned wettability will induce patterned varia-
tions in slip length. While this is not surprising given the
demonstrated link between wettability and slip in other mo-
lecular dynamics simulations �18�, it supports the use of the
boundary condition �7� in evaluating the effect of patterned
wettability on flow. Furthermore, we found a strong qualita-
tive agreement between the molecular dynamics simulations
and the approximate analytic solutions developed in Secs. II
and III, although the theory tended to underestimate the mag-
nitude of the variations in flow due the patterning by a factor
of 2. This underestimation may in part be due to the way the
theory was fitted to the simulations �i.e., by fitting effective
slip lengths in the different channel regions�. However, the
theory also assumes the fluid is incompressible, whereas sub-
stantial variations in fluid density can occur at the walls. In
particular, a reduction in the density of the fluid near the
solvophobic region of the wall relative to the solvophilic
region of the wall, as observed in the MD simulations, would
tend to enhance the transverse variations in flow. Finally, we
note that in our analysis in Secs. II and III we only solved the
slip boundary condition to order � �the relative variation in
slip length�. In the molecular dynamics simulations

conducted here � was found to be 0.2–0.3.
In any case our calculations here have demonstrated that

in an incompressible Newtonian fluid, changes in slip length
can induce flow transverse to the walls in a nano- or micro-
fluidic channel. Further our calculations suggest that these
transverse flows are maximized if the patterning of slip takes
place on a wavelength �	w. Thus it certainly appears that
patterned slip could be used to induce mixing in the same
way as patterned topography �e.g., such as the asymmetric
herringbone pattern studied in Ref. �10��. Figure 12 suggests
some possible patternings that could be used for mixing.
However, we note that slip also changes the velocity profile
in a channel �e.g., see Fig. 8�. These changes in profile will
no doubt alter the effect of dispersion on mixing in a

FIG. 11. A plot showing the square wave cfs�x� boundary con-
dition with kw=� imposed on the walls of the molecular dynamics
simulation, the effective slip lengths �eff induced by cfs, and the
corresponding variations in v�x ,y�=v1�x ,y� in a channel. The chan-
nel width is 2w=20� with periodic boundary conditions applied at
x= ±10�. The peak flow velocity is U=1.30�� /m�1/2 and the peak
transverse velocity is V=0.060�� /m�1/2. Regions with light shading
indicate flow in the y direction and regions with light shading indi-
cate flow in the negative y direction. Note the downstream phase
shift in the variations in v�x ,y� with respect to the variations in cfs,
especially in comparion with Fig. 9.

FIG. 12. Suggested designs for mixing devices. The light re-
gions would be coated in such a way as to induce a large slip length
�say, with a superhydrophobic coating�, while the dark regions
would be coated to induce a small slip length or no slip �say, with a
superhydrophilic coating�. More complicated patterns may enhance
the mixing, provided the patterns are on a length scale comparable
to the channel width.
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channel. While our perturbative approach is not valid in the
limit of large variations in slip length which would be most
effective for mixing, we would expect the flows to be quali-
tatively similar. Cottin-Bizonne et al. �25� have calculated
the effective slip lengths in a half-plane geometry for flows
over no-slip and partial or full slip patterned regions, al-
though they have not examined how this alters the velocity
profiles.

We also note that surfaces with switchable wettability
have recently been demonstrated �26�. This switchability
suggests the interesting prospect of a slip length which is
time and space dependent—i.e., �=��x , t�. The approach out-
lined in Sec. II can easily be adapted to consider this situa-
tion. If we imagine a traveling-wave variation in slip length
���t+kx�, then in a frame comoving with this wave, the
effects on the flow will appear similar to those of speeding
up �or slowing down� the flow. Thus the response of the fluid
to a rapidly changing time-dependent slip will lag these
changes in slip �as the fluid response does for the fast-
moving flow in Fig. 7�. We will consider this problem in
more detail in further work.

VI. CONCLUSION

We have considered the flow of a Newtonian fluid in a
channel with spatially varying surface properties. Using a
pertubative approach we derived equations that describe flow
in a channel with patterned variations in slip length. We also
examined flows in a channel with varying wettability using
molecular dynamics. The simulations demonstrated that the
variations in wettability induce variations in slip. Good
qualitative agreement was found between the molecular dy-
namics simulations and the approximate analysis of the
Navier-Stokes equations.
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